
Distributed Data Management
(Handout)

Dr. Eike Schallehn

1

Organization

2

Organization of Lecture and Exercises

• Weekly lecture

– Teacher: Eike Schallehn (eike@iti.cs.uni-magdeburg.de)

• Weekly exercises with two alternative time slots

– Starting in the third week of the lecture period

– Teachers: Xiao Chen, Juliana Alves Pereira

• Written exam at the end of the semester (registration using HISQUIS system)

Prerequisites

• Required: knowledge about database basics from database introduction course

– Basic principles, Relational Model, SQL, database design, ER Model

• Helpful: advanced knowledge about database internals

– Query processing, storage structures

• Helpful hands-on experience:

– SQL queries, DDL and DML

Content Overview

1. Foundations

2. Distributed DBMS: architectures, distribution, query processing, transaction man-
agement, replication

3. Parallel DBMS: architectures, query processing

4. Federated DBS: architectures, conflicts, integration, query processing

5. Peer-to-peer Data Management

English Literature /1

• M. Tamer Özsu, P. Valduriez: Principles of Distributed Database Systems. Sec-
ond Edition, Prentice Hall, Upper Saddle River, NJ, 1999.

• S. Ceri and G. Pelagatti: Distributed Databases Principles and Systems, McGraw
Hill Book Company, 1984.

• C. T. Yu, W. Meng: Principles of Database Query Processing for Advanced Ap-
plications. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

3

English Literature /2

• Elmasri, R.; Navathe, S.: Fundamentals of Database Systems, Addison Wesley,
2003

• C. Dye: Oracle Distributed Systems, O’Reilly, Sebastopol, CA, 1999.

• D. Kossmann: The State of the Art in Distributed Query Processing, ACM Com-
puting Surveys, Vol. 32, No. 4, 2000, S. 422-469.

German Literature

• E. Rahm, G. Saake, K.-U. Sattler: Verteiltes und Paralleles Datenmanagement.
Springer-Verlag, Heidelberg, 2015.

• P. Dadam: Verteilte Datenbanken und Client/Server-Systeme, Springer-Verlag,
Berlin, Heidelberg 1996.

• S. Conrad: Föderierte Datenbanksysteme: Konzepte der Datenintegration. Springer-
Verlag, Berlin/Heidelberg, 1997.

4

Part I

Introduction
Overview

Contents

I Introduction 5

1 Motivation 6

2 Classification of Multi-Processor DBMS 12

3 Recapitulation 21

5

1 Motivation
Centralized Data Management

TXN management

Data manipulation

Data definition

Application

DBMS

Application

Application

...

• New requirements

– Support for de-centralized organization structures

– High availability

– High performance

– Scalability

Client Server Data Management in a Network

Node

Network

Node

Node

Node

6

Distributed Data Management

Node

Node

Network

Node

Node

Distributed Data Management: Example

Network

Products San Francisco, Sydney

Customers San Francisco, Sydney

Customers SydneyProducts München, Magdeburg,

Sydney

Customers München

Customers Magdeburg

Products Magdeburg, San Francisco

Products Sydney

Sydney

Magdeburg

München

San Francisco

Advantages of Distributed DBMS

• Transparent management of distributed/replicated data

• Availability and fault tolerance

• Performance

• Scalability

7

Transparent Data Management

• Transparency: "‘hide"’ implementation details

• For (distributed) database systems

– Data independence (physical, logical)

– Network transparency

∗ "‘hide"’ existence of the network
∗ "‘hide"’ physical location of data

– To applications a distributed DBS looks just like a centralized DBS

Transparent Data Management/2

• continued:

– Replication transparency

∗ Replication: managing copies of remote data (performance, availabil-
ity, fault-tolerance)

∗ Hiding the existence of copies (e.g. during updates)

– Fragmentation transparency

∗ Fragmentation: decomposition of relations and distribution of result-
ing fragments

∗ Hiding decomposition of global relation

Who provides Transparency?

• Application

– Different parts/modules of distributed application

– Communication / data exchange using standard protocols (RPC, CORBA,
HTTP, SOAP, . . .)

• DBMS

– Transparent SQL-access to data on remote DB-instances

– Requires query decomposition, transaction coordination, replication

• Operating system

– Operating systems provides network transparency e.g. on file system level
(NFS) or through standard protocols (TCP/IP)

8

Fault-Tolerance

• Failure of one single node can be compensated

• Requires

– Replicated copies on different nodes

– Distributed transactions

Performance

• Data can be stored, where they are most likely used→ reduction of transfer costs

• Parallel processing in distributed systems

– Inter-transaction-parallelism: parallel processing of different transactions

– Inter-query-parallelism: parallel processing of different queries

– Intra-query-parallelism: parallel of one or several operations within one
query

Scalability

• Requirements raised by growing databases or necessary performance improve-
ment

– Addition of new nodes/processors often cheaper than design of new system
or complex tuning measures

9

Differentiation: Distributed Information System

• Distributed Information System

– Application components communicate for purpose of data exchange (dis-
tribution on application level)

• Distributed DBS

– Distribution solely realized on the DBS-level

Differentiation: Distributed File System

• Distributed File System provides non-local storage access by means of operating
system

• DBMS on distributed file system

– All data must be read from blocks stored on different disks

– Processing is performed only within DBMS node (not distributed)

– Distribution handled by operating system

Special Case: Parallel DBS

• Data management on simultaneous computer (multi processor, special hardware)

• Processing capacities are used for performance improvement

• Example

– 100 GB relation, sequential read with 10 MB/s 17 minutes

– parallel read on 10 nodes (without considering coordination overhead)
1:40 minutes

Special Case: Heterogeneous DBS

• Motivation: integration of previously existing DBS (legacy systems)

– Integrated access: global queries, relationships between data objects in dif-
ferent databases, global integrity

• Problems

– Heterogeneity on different levels: system, data model, schema, data

• Special importance on the WWW: integration of Web sources Mediator con-
cept

10

Special Case: Peer-to-Peer-Systems

• Peer-to-Peer (P2P): networks without centralized servers

– All / many nodes (peers) store data

– Each node knows only some "‘close"’ neighbors

∗ No global view
∗ No centralized coordination

• Examples: Napster, Gnutella, Freenet, BitTorrent, . . .

– Distributed management of data (e.g. MP3-Files)

– Lookup using centralized servers (Napster) or distributed (Gnutella)

11

2 Classification of Multi-Processor DBMS
Multi-Processor DBMS

• In general: DBMS which are able to use multiple processors or DBMS-instances
to process database operations [Rahm 94]

• Can be classified according to different criteria

– Processors with same or different functionality

– Access to external storage

– Spatial distribution

– Processor connection

– Homogeneous vs. heterogeneous architecture

Classification Overview

• Assumption: each processor provides the same functionality

• Classification [Rahm94]

Connection

External Storage

local

loose (close) loose

Shared−NothingShared−DiskShared−Everything

Multi−Processor DBMS

partitioned

local distributed

tight close loose

Spatial

shared

Distribution

Processor

12

Criterion: Access to External Storage

• Partitioned access

– External storage is divided among processors/nodes

∗ Each processor has only access to local storage
∗ Accessing different partitions requires communication

• Shared access

– Each processor has access to full database

– Requires synchronisation

Criterion: Spatial Distribution

• Locally distributed: DB-Cluster

– Fast inter-processor communication

– Fault-tolerance

– Dynamic load balancing possible

– Little administration efforts

– Application: parallel DBMS, solutions for high availabilty

• Remotely distributed: distributed DBS in WAN scenarios

– Support for distributed organization structures

– Fault-tolerant (even to major catastrophes)

– Application: distributed DBS

Criterion: Processor Connection

• Tight connection

– Processors share main memory

– Efficient co-operation

– Load-balancing by means of operating system

– Problems: Fault-tolerance, cache coherence, limited number of processors
(≤ 20)

– Parallel multi-processor DBMS

13

Criterion: Processor Connection /2

• Loose connection:

– Independent nodes with own main memory and DBMS instances

– Advantages: failure isolation, scalability

– Problems: expensive network communication, costly DB operations, load
balancing

• Close connection:

– Mix of the above

– In addition to own main memory there is connection via shared memory

– Managed by operating system

14

Class: Shared-Everything

Cache

CPU

Shared Main Memory

Cache

CPU CPU

DBMS Buffer

Shared Hard Disks

Cache

Class: Shared-Everything /2

• Simple realization of DBMS

• Distribution transparency provided by operating system

• Expensive synchronization

• Extended implementation of query processing

15

Class: Shared-Nothing

CPU

Cache

CPU

Cache

CPU

DBMS−

Cache

DBMS−

Buffer

DBMS−

BufferBuffer

Main Memory Main Memory Main Memory

Class: Shared-Nothing /2

• Distribution of DB across various nodes

• Distributed/parallel execution plans

• TXN management across participating nodes

• Management of catalog and replicas

16

Class: Shared-Disk

Cache

CPU

Main Memory

Cache

CPU

gemeinsame Festplatten

Highspeed Communication

DBMS−

Buffer

DBMS−

Puffer

DBMS−

Buffer

CPU

Main Memory Main Memory

Cache

Class: Shared-Disk /2

• Avoids physical data distribution

• No distributed TXNs and query processing

• Requires buffer invalidation

17

Criterion: Integrated vs. Federated DBS

• Integrated:

– Shared database for all nodes one conceptual schema

– High distribution transparency: access to distributed DB via local DBMS

– Requires co-operation of DBMS nodes restricted autonomy

• Federated:

– Nodes with own DB and own conceptual schema

– Requires schema integration global conceptual schema

– High degree of autonomy of nodes

Criterion: Integrated vs. Federates DBS /2

homogeneous

Multi−Processor−DBS

Shared−Disk Shared−Nothing

integrated integrated federated

heterogeneoushomogeneous homogeneous

18

Criterion: Centralized vs. De-centralized Coordination

• Centralized:

– Each node has global view on database (directly of via master)

– Central coordinator: initiator of query/transaction→ knows all participat-
ing nodes

– Provides typical DBS properties (ACID, result completeness, etc.)

– Applications: distributed and parallel DBS

∗ Limited availability, fault-tolerance, scalabilty

Criterion: Centralized vs. De-centralized Coordination /2

• De-centralized:

– No global view on schema→ peer knows only neighbors

– Autonomous peers; global behavior depends on local interaction

– Can not provide typical DBMS properties

– Application: P2P systems

∗ Advantages: availability, fault-tolerance, scalabilty

19

Comparison
Parallel Distributed Federated

DBS DBS DBS
High TXN rates ↑ →↗ →
Intra-TXN-Parallelism ↑ →↗ ↘→
Scalability ↗ →↗ →
Availability ↗ ↗ ↘
Geogr. Distribution ↘ ↗ ↗
Node Autonomy ↘ → ↗
DBS-Heterogeneity ↘ ↘ ↗
Administration → ↘ ↘↓

20

3 Recapitulation
Database Management Systems (DBMS)

• Nowadays commonly used

– to store huge amounts of data persistently,

– in collaborative scenarios,

– to fulfill high performance requirements,

– to fulfill high consistency requirements,

– as a basic component of information systems,

– to serve as a common IT infrastructure for departments of an organization
or company.

Database Management Systems
A database management system (DBMS) is a suite of computer programs de-

signed to manage a database and run operations on the data requested by numerous
clients.

A database (DB) is an organized collection of data.
A database system (DBS) is the concrete instance of a database managed by a

database management system.

21

Codd’s 9 Rules for DBMS

• Differentiate DBMS from other systems managing data persistently, e.g. file
systems

1 Integration: homogeneous, non-redundant management of data

2 Operations: means for accessing, creating, modifying, and deleting data

3 Catalog: the data description must be accessible as part of the database itself

4 User views: different users/applications must be able to have a different percep-
tion of the data

5 Integrity control: the systems must provide means to grant the consistency of
data

6 Data security: the system must grant only authorized accesses

7 Transactions: multiple operations on data can be grouped into a logical unit

8 Synchronization: parallel accesses to the database are managed by the system

9 Data backups: the system provides functionality to grant long-term accessibil-
ity even in case of failures

22

3 Level Schema Architecture

Internal Schema

D
ata R

epresentation

Q
uery P

rocessing

Conceptual Schema

External Schema N. . .External Schema 1

• Important concept of DBMS

• Provides

– transparency, i.e. non-visibility, of storage implementation details

– ease of use

– decreased application maintenance efforts

– conceptual foundation for standards

– portability

• Describes abstraction steps:

– Logical data independence

– Physical data independence

Data Independence
Logical data independence: Changes to the logical schema level must not require

a change to an application (external schema) based on the structure.
Physical data independence: Changes to the physical schema level (how data is

stored) must not require a change to the logical schema.

23

Architecture of a DBS

Schema architecture roughly conforms to gen-
eral architecture of a database systems

• Applications access database using spe-
cific views (external schema)

• The DBMS provides access for all appli-
cations using the logical schema

• The database is stored on secondary
storage according to an internal schema

Application n. . .

Database

DBMS

Application 1

Client Server Architecture

Schema architecture does not directly re-
late to client server architecture (communica-
tion/network architecture)

• Clients may run several applications

• Applications may run on several clients

• DB servers may be distributed

• ...

DB Server

. . .

Database

Client 1 Client n

24

The Relational Model

• Developed by Edgar F. Codd (1923-2003) in 1970

• Derived from mathematical model of n-ary relations

• Colloquial: data is organized as tables (relations) of records (n-tuples) with
columns (attributes)

• Currently most commonly used database model

• Relational Database Management Systems (RDBMS)

• First prototype: IBM System R in 1974

• Implemented as core of all major DBMS since late ’70s: IBM DB2, Oracle, MS
SQL Server, Informix, Sybase, MySQL, PostgreSQL, etc.

• Database model of the DBMS language standard SQL

Basic Constructs
A relational database is a database that is structured according to the relational

database model. It consists of a set of relations.

Relation

. . .

. . .

. . .

. . .R 1 nA A

Tuple

Relation schema

Relation name Attributes

}

Integrity Constraints

• Static integrity constraints describe valid tuples of a relation

– Primary key constraint

– Foreign key constraint (referential integrity)

– Value range constraints

– ...

• In SQL additionally: uniqueness and not-NULL

• Transitional integrity constraints describe valid changes to a database

25

The Relational Algebra
A relational algebra is a set of operations that are closed over relations.

• Each operation has one or more relations as input

• The output of each operation is a relation

Relational Operations
Primitive operations:

• Selection σ

• Projection π

• Cartesian product (cross prod-
uct) ×

• Set union ∪

• Set difference −

• Rename β

Non-primitive operations

• Natural Join ./

• θ-Join and Equi-Join ./ϕ

• Semi-Join n

• Outer-Joins = ×

• Set intersection ∩

• . . .

Notation for Relations and Tuples

• If R denotes a relation schema (set of attributes), than the function r(R) denotes
a relation conforming to that schema (set of tuples)

• R and r(R) are often erroneously used synonymously to denote a relation, as-
suming that for a given relation schema only one relation exists

• t(R) denotes a tuple conforming to a relation schema

• t(R.a) denotes an attribute value of a tuple for an attribute a ∈ R

The Selection Operation σ
Select tuples based on predicate or complex condition

PROJECT
PNAME PNUMBER PLOCATION DNUM
ProductX 1 Bellaire 5
ProductY 2 Sugarland 5
ProductZ 3 Houston 5
Computerization 10 Stafford 4
Reorganization 20 Houston 1
Newbenefits 30 Stafford 4

σPLOCATION=′Stafford′(r(PROJECT))

PNAME PNUMBER PLOCATION DNUM
Computerization 10 Stafford 4
Newbenefits 30 Stafford 4

26

The Projection Operation π
Project to set of attributes - remove duplicates if necessary

PROJECT
PNAME PNUMBER PLOCATION DNUM
ProductX 1 Bellaire 5
ProductY 2 Sugarland 5
ProductZ 3 Houston 5
Computerization 10 Stafford 4
Reorganization 20 Houston 1
Newbenefits 30 Stafford 4

πPLOCATION,DNUM (r(PROJECT))

PLOCATION DNUM
Bellaire 5
Sugarland 5
Houston 5
Stafford 4
Houston 1

Cartesian or cross product ×
Create all possible combinations of tuples from the two input relations

R
A B
1 2
3 4

S
C D E
5 6 7
8 9 10

11 12 13

r(R)× r(S)

A B C D E
1 2 5 6 7
1 2 8 9 10
1 2 11 12 13
3 4 5 6 7
3 4 8 9 10
3 4 11 12 13

Set: Union, Intersection, Difference

• All require compatible schemas: attribute names and domains

• Union: duplicate entries are removed

• Intersection and Difference: ∅ as possible result

The Natural Join Operation ./

• Combine tuples from two relations r(R) and r(S) where for

– all attributes a = R ∩ S (defined in both relations)

27

– is t(R.a) = t(S.a).

• Basic operation for following key relationships

• If there are no common attributes result is Cartesian product R ∩ S = ∅ =⇒
r(R) ./ r(S) = r(R)× r(S)

• Can be expressed as combination of π, σ and× r(R) ./ r(S) = πR∪S(σ∧
a∈R∩S t(R.a)=t(S.a)(r(R)×

r(S)))

The Natural Join Operation ./ /2

R
A B
1 2
3 4
5 6

S
B C D
4 5 6
6 7 8
8 9 10

r(R) ./ r(S)
A B C D
3 4 5 6
5 6 7 8

The Semi-Join Operation n

• Results all tuples from one relation having a (natural) join partner in the other
relation r(R)n r(S) = πR(r(R) ./ r(S))

PERSON
PID NAME
1273 Dylan
2244 Cohen
3456 Reed

CAR
PID BRAND
1273 Cadillac
1273 VW Beetle
3456 Stutz Bearcat

r(PERSON) n r(CAR)

PID NAME
1273 Dylan
3456 Reed

Other Join Operations

• Conditional join: join condition ϕ is explicitly specified r(R) ./ϕ r(S) =
σϕ(r(R)× r(S))

• θ-Join: special conditional join, where ϕ is a single predicate of the form aθb
with a ∈ R, b ∈ S, and θ ∈ {=, 6=, >,<,≤,≥, . . . }

28

• Equi-Join: special θ-Join where θ is =.

• (Left or Right) Outer Join: union of natural join result and tuples from the left
or right input relation which could not be joined (requires NULL-values to grant
compatible schemas).

Relational Database Management Systems
A Relational Database Management System (RDBMS) is a database manage-

ment system implementing the relational database model.

• Today, most relational DBMS implement the SQL database model

• There are some significant differences between the relational model and SQL
(duplicate rows, tuple order significant, anonymous column names, etc.)

• Most distributed and parallel DBMS have a relational (SQL) data model

SQL Data Model

• Said to implement relational database model

• Defines own terms

Table

. . .

. . .

. . .

. . .R 1 nA A

Row

Table head

Table name Columns

}

• Some significant differences exist

Structured Query Language

• Structured Query Language (SQL): declarative language to describe requested
query results

• Realizes relational operations (with the mentioned discrepancies)

• Basic form: SELECT-FROM-WHERE-block (SFW)

SELECT FNAME, LNAME, MGRSTARTDATE
FROM EMPLOYEE, DEPARTMENT
WHERE SSN=MGRSSN

29

SQL: Selection σ
σDNO=5∧SALARY>30000(r(EMPLOY EE))

SELECT *
FROM EMPLOYEE
WHERE DNO=5 AND SALARY>30000

SQL: Projection π
πLNAME,FNAME(r(EMPLOY EE))

SELECT LNAME,FNAME
FROM EMPLOYEE

• Difference to RM: does not remove duplicates

• Requires additional DISTINCT

SELECT DISTINCT LNAME,FNAME
FROM EMPLOYEE

SQL: Cartesian Product ×
r(EMPLOY EE)× r(PROJECT)

SELECT *
FROM EMPLOYEE, PROJECT

SQL: Natural Join ./
r(DEPARTMENT) ./ r(DEPARTMENT_LOCATIONS)

SELECT *
FROM DEPARTMENT

NATURAL JOIN DEPARTMEN_LOCATIONS

SQL: Equi-Join
r(EMPLOY EE) ./SSN=MGRSSN r(DEPARTMENT)

SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE SSN=MGRSSN

SQL: Union
r(R) ∪ r(S)

SELECT * FROM R
UNION
SELECT * FROM S

30

• Other set operations: INTERSECT, MINUS

• Does remove duplicates (in compliance with RM)

• If duplicates required:

SELECT * FROM R
UNION ALL
SELECT * FROM S

SQL: Other Features

• SQL provides several features not in the relational algebra

– Grouping And Aggregation Functions, e.g. SUM, AVG, COUNT, . . .
– Sorting

SELECT PLOCATION, AVG(HOURS)
FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE SSN=ESSN AND PNO=PNUMBER
GROUP BY PLOCATION
HAVING COUNT(*) > 1
ORDER BY PLOCATION

SQL DDL

• Data Definition Language to create, modify, and delete schema objects

CREATE DROP ALTER TABLE mytable (id INT, ...)
DROP TABLE ...
ALTER TABLE ...
CREATE VIEW myview AS SELECT ...
DROP VIEW ...
CREATE INDEX ...
DROP INDEX ...
...

Simple Integrity Constraints
CREATE TABLE employee(

ssn INTEGER,
lname VARCHAR2(20) NOT NULL,
dno INTEGER,
...
FOREIGN KEY (dno)

REFERENCES department(dnumber),
PRIMARY KEY (ssn)

)

• Additionally: triggers, explicit value domains, ...

31

SQL DML

• Data Manipulation Language to create, modify, and delete tuples

INSERT INTO (<COLUMNS>) mytable VALUES (...)

INSERT INTO (<COLUMNS>) mytable SELECT ...

UPDATE mytable
SET ...
WHERE ...

DELETE FROM mytable
WHERE ...

Other Parts of SQL

• Data Control Language (DCL): GRANT, REVOKE

• Transaction management: START TRANSACTION, COMMIT, ROLLBACK

• Stored procedures and imperative programming concepts

• Cursor definition and management

Transactions

• Sequence of database operations

– Read and write operations

– In SQL sequence of INSERT, UPDATE, DELETE, SELECT statements

• Build a semantic unit, e.g. transfer of an amount from one bank account to
another

• Has to conform to ACID properties

Transactions: ACID Properties

• Atomicity means that a transaction can not be interrupted or performed only
partially

– TXN is performed in its entirety or not at all

• Consistency to preserve data integrity

– A TXN starts from a consistent database state and ends with a consistent
database state

32

• Isolation

– Result of a TXN must be independent of other possibly running parallel
TXNs

• Durability or persistence

– After a TXN finished successfully (from the user’s view) its results must
be in the database and the effect can not be reversed

Functional Dependencies

• A functional dependency (FD) X → Y within a relation between sets r(R) of
attributes X ⊆ R and Y ⊆ R exists, if for each tuple the values of X determine
the values for Y

• i.e.
∀t1, t2 ∈ r(R) : t1(X) = t2(X)⇒ t1(Y) = t2(Y)

Derivation Rules for FDs
R1 Reflexivity if X ⊇ Y =⇒ X→Y
R2 Accumulation {X→Y } =⇒ XZ→Y Z
R3 Transitivity {X→Y, Y →Z} =⇒ X→Z
R4 Decomposition {X→Y Z} =⇒ X→Y
R5 Unification {X→Y,X→Z} =⇒ X→Y Z
R6 Pseudotransitivity {X→Y,WY →Z} =⇒ WX→Z

R1-R3 known as Armstrong-Axioms (sound, complete)

Normal Forms

• Formal criteria to force schemas to be free of redundancy

• First Normal Form (1NF) allows only atomic attribute values

– i.e. all attribute values ar of basic data types like integer or string but
not further structured like e.g. an array or a set of values

• Second Normal Form (2NF) avoids partial dependencies

– A partial dependency exist, if a non-key attribute is functionally dependent
on a real subset of the primary key of the relation

33

Normal Forms /2

• Third Normal Form (3NF) avoids transitive dependencies

– Disallows functional dependencies between non-key attributes

• Boyce-Codd-Normal Form (BCNF) disallows transitive dependencies also for
primary key attributes

34

