
Part II

Distributed Database Systems
4 Distributed DBS Architecture
Overview

Contents

35

4.1 Foundations of DDBS
Architecture & Data Distribution

Node

Node

Node

DBMS−Instance

Network

Node

Dimensions

Distributed DBS

Heterogeneity

Autonomy

Centralized DBS

Client/Server−DBS

Distribution

36

12 Rules for DDBMS by Date

1. Local Autonomy

• Component system have maximal control over own data, local access does
not require access to other components

2. No reliance on central site

• Local components can perform independently of central component

3. Continuous operation/high availability

• Overall system performs despite local interrupt

4. Location transparency

• User of overall system should not be aware of physical storage location

12 Rules for DDBMS by Date /2

5. Fragmentation transparency

• If data of one relation is fragmented, user should not be aware of this

6. Replication transparency

• User should not be aware of redundant copies of data
• Management and redundancy is controlled by DBMS

7. Distributed query processing

• Efficient access to data stored on different sites within one DB operation

12 Rules for DDBMS by Date /3

8. Distributed Transaction Management

• ACID properties must persist for distributed operations

9. Hardware independence

• Component DB processing on different hardware platforms

10. Operating system independence

• Component DB processing on different OS

11. Network independence

• DB processing using different network protocols

12. DBMS independence (ideal)

• Usage of different DBMS possible

37

Schema Architecture

Local

schema (GDS)

Conceptual Conceptual
Local Local

Internal Internal
LocalLocal

...

...

Schema M (LCS)

Schema M (LIS)Schema 2 (LIS)

External Schema 1

Global

Distribution

Schema 2 (LCS)

Local

Conceptual

Schema 1 (LCS)

Internal

Schema 1 (LIS)

External Schema N

Global

Conceptual

Schema (GCS)

• Global conzeptual schema (GCS)

– Logical structure of overall DB

– Supported by all nodes

– Ensures transparency

• Global distribution schema (GDS)

– Describes fragmentation, replication, allocation

38

System Architecture

Synchronisation

Global

Query
Management

Catalog

Global

Management

Recovery
Management
Transaction

Global

ReplicaGlobal

Global

local

Component

global

Component

Processing

"normal DBMS"

39

4.2 Catalog Management
Catalog Management

• Catalog: collection of metadata (schema, statistics, access rights, etc.)

– Local catalog

∗ Identical to catalog of a centralized DBS
∗ consistes of LIS and LCS

– Global ctalaog

∗ Also contains GCS and GDS
∗ System-wide management of users and access rights

• Storage

– Local catalog: on each node

– Global catalog: centralized, replicated, or partitioned

Global Catalog /1

• Centralized: one instance of global catalog managed by central node

– Advantages: only one update operation required, litte space consumption

– Disadvantages: request for each query, potential bottleneck, critical ressource

• Replicated: full copy of global catalog stored on each node

– Advantage: low communication overhead during queries, availabilty

– Disadvantage: high overhead for updates

• Mix- form: cluster-catalog with centralized catalog for certain clusters of nodes

Global Catalog /2

• Partitioned: (relevant) part of the catalog is stored on each node

– No explicit GCS union of LCS

– Partitioned GDS by extend object (relations, etc.) names (see System R*)

40

Coherency Control

• Idea: buffer for non-local parts of the catalog

– Avoids frequent remote accesses for often used parts of the catalog

• Problem: invalidation of buffered copies after updates

Coherency Control /2

• Approaches

– Explicit invalidation:

∗ Owner of catalog data keeps list of copy sites
∗ After an update these nodes are informed of invalidation

– Implicit invalidation:

∗ Identification of invalid catalog data during processing time using ver-
sion numbers or timestamps (see System R*)

DB Object Name Management

• Task: identification of relations, views, procedures, etc.

• Typical schema object names in RDBMS: [<username>.]<objectname>

• Requirement global uniqueness in DDBS

– Name Server approach: management of names in centralized catalog

– Hierarchic Naming: enrich object name with node name [[<nodename>.]<username>.]<objectname>

∗ Node name: birth site (or simplification via alias)

Name Management: Node Types

Store site

global Name
Birth site

Catalog site

Store site Store site

41

Catalog Management in System R*

• Birth site

– Prefix of the relation name

– Knows about storage sites

• Query processing

– Executing node gets catalog entry of relevant relation

– Catalog entry is buffered for later accesses

Catalog Management in System R* /2

• Query processing (continued)

– Partial query plans include time stamp of catalog entry

– Node processing partial query checks whether catalog time stamp is still
current

• In case of failure: buffer invalidation, re-set query and new query translation
according to current schema

• Summary:

– Advantage: high degree of autinomy, user-controlled invalidation of buffered
catalog data, good performance

– Disadvantage: no uniform realization of global views

42

4.3 DDBS Design: Fragmentation
Database Distribution

• In Shared-Nothing-Systems (DDBS): definition of physical distribution of data

• Impact:

– Communication efforts overall performance

– Load balancing

– Availability

Bottom Up vs. Top Down

• Bottom Up

– Subsumption of local conceptual schemata (LCS) into global conceptual
schema (GCS)

– Integration of existing DB schema integration (Federated DBS)

• Top Down

– GCS of local DB designed first

– Distribution of schema to different nodes

– Distribution Design

Distribution Design Tasks

Node 1

Node 2

AllocationsFragmentsglobal Relation R

R1

R1

Node 3

R3

R2.1

R3

R4.2

R4.1

R2.2

R2

R4

43

Fragmentation

• Granularity of distribution: relation

– Operations on one relation can always be performed on one node

– Simplifies integrity control

• Granularity of distribution: fragments of relations

– Grants locality of access

– Load balancing

– Reduced processing costs for operations performed only on part of the data

– Parallel processing

Fragmentation /2

• Approach:

– Column- or tuple-wise decomposition (vertical/horizontal)

– Described using relational algebra expressions (queries)

– Important rules/requirements

∗ Completeness
∗ Reconstructability
∗ Disjointness

Example Database
MEMBER

MNo MName Position
M1 Ian Curtis SW Developer
M2 Levon Helm Analyst
M3 Tom Verlaine SW Developer
M4 Moe Tucker Manager
M5 David Berman HW-Developer

PROJECT
PNr PName Budget Loc
P1 DB Development 200.000 MD
P2 Hardware Dev. 150.000 M
P3 Web-Design 100.000 MD
P4 Customizing 250.000 B

ASSIGNMENT
MNr PNr Capacity
M1 P1 5
M2 P4 4
M2 P1 6
M3 P4 3
M4 P1 4
M4 P3 5
M5 P2 7

SALARY
Position YSalary
SW Developer 60.000
HW-Developer 55.000
Analyst 65.000
Manager 90.000

44

Primary Horizontal Fragmentation

• "‘Tupel-wise"’ decomposition of a global relation R into n fragments Ri

• Defined by n selection predicates Pi on attributes from R

Ri := σPi(R) (1 ≤ i ≤ n)

• Pi: fragmentation predicates

• Completeness: each tuple from R must be assigned to a fragment

• Disjointness: decomposition into disjoint fragments Ri ∩ Rj = ∅ (1 ≤ i, j ≤
n, i 6= j),

• Reconstructability: R =
⋃

1≤i≤n

Ri

Primary Horizontal Fragmentation /2

• Example: fragmentation of PROJECT by predicate on location attribute "‘Loc"’

PROJECT1 = σLoc=’M’(PROJECT)
PROJECT2 = σLoc=’B’(PROJECT)
PROJECT3 = σLoc=’MD’(PROJECT)

PROJECT1

PNr PName Budget Loc
P2 Hardware Dev. 150.000 M

PROJECT2

PNr PName Budget Loc
P4 Customizing 250.000 B

PROJECT3

PNr PName Budget Loc
P1 DB Development 200.000 MD
P3 Web-Design 100.000 MD

45

Derived Horizontal Fragmentation

• Fragmentation definition of relation S derived from existing horizontal fragmen-
tation of relation R

• Using foreign key relationships

• Relation R with n fragments Ri

• Decomposition of depending relation S

Si = S nRi = S n σPi(R) = πS.*(S on σPi(R))

• Pi defined only on R

• Reconstructability: see above

• Disjointness: implied by disjointness of R-fragments

• Completeness: granted for lossless semi-join (no null-values for foreign key in
S)

Derived Horizontal Fragmentation /2

• Fragmentation of relation ASSIGNMENT derived from fragmentation of PROJECT
relation

ASSIGNMENT1= ASSIGNMENT n PROJECT1

ASSIGNMENT2= ASSIGNMENT n PROJECT2

ASSIGNMENT3= ASSIGNMENT n PROJECT3

ASSIGNMENT1
MNr PNr Capacity
M5 P2 7

ASSIGNMENT2
MNr PNr Capacity
M2 P4 4
M3 P4 3

ASSIGNMENT3
MNr PNr Capacity
M1 P1 5
M2 P1 6
M4 P1 4
M4 P3 5

46

Vertical Fragmentation

• Comlumn-wise decomposition of a relation using relational projection

• Completeness: each attribute must be in at least one fragment

• Reconstructability: through natural join primary key of global relation must
be in each fragment

Ri := πK,Ai,...,Aj (R)

R = R1 on R2 on · · · on Rn

• Limited disjointness

Vertical Fragmentation /2

• Fragmentation of PROJECT-Relation regarding Budget and project name / loca-
tion

PROJECT1 = πPNr, PName, Loc(PROJECT)
PROJECT2 = πPNr, Budget(PROJECT)

PROJECT1
PNr PName Loc
P1 DB Development MD
P2 Hardware Dev. M
P3 Web-Design MD
P4 Customizing B

PROJECT2
PNr Budget
P1 200.000
P2 150.000
P3 100.000
P4 250.000

47

Hybrid Fragmentation

• Fragment of a relation→ is relation itself

• Can be subject of further fragmentation

• Also possible: combination of horizontal and vertical fragmentation

PROJECT1=πPNr, PName, Loc(PROJECT)

PROJECT2=πPNr, Budget(PROJECT)

PROJECT1,1=σLoc=’M’(PROJECT1)

PROJECT2,1=σLoc=’B’(PROJECT1)

PROJECT3,1=σLoc=’MD’(PROJECT1)

PROJECT

PROJECT

PROJECT

PROJECT PROJECT PROJECT1,1 1,2 1,3

1 2

horizontal

vertical

48

Fragmentation transparency

• Decomposition of a relation is for user/application not visble

• Only view on global relation

• Requires mapping of DB operations to fragments by DDBMS

• Example

– Transparent: select * from Project where PNr=P1

– Without transparency:

select * from Project1 where PNr=P1
if not-found then

select * from Project2 where PNr=P1
if not-found then

select * from Project3 where PNr=P1

Fragmentation transparency /2

• Example (continued)

– Transparent: update Project set Ort=’B’ where PNr=P3

– Without transparency:

select PNr, PName, Budget
into :PNr, :PName, :Budget
from Project3 where PNr=P3

insert into Project2
values (:PNr, :PName, :Budget, ’B’)

delete from Project3 where PNr=P3

49

Computation of an optimal Fragmentation

• In huge systems with many relations/nodes: intuitive decomposition often too
complex/not possible

• In this case: systematic process based on access characteristics

– Kind of access (read/write)

– Frequency

– Relations / attributes

– Predicates in queries

– Transfer volume and times

Optimal horizontal Fragmentation

• Based on [Özsu/Valduriez 99] and [Dadam 96]

• Given: relationR(A1, . . . , An), operator θ ∈ {<,≤, >,≥,=, 6=}, Domain dom(Ai)

• Definition: simple predicate pi of the form Ajθ const with const ∈ dom(Aj)

– Defines possible binary fragmentation of R

– Example:

PROJECT1= σBudget>150.000(PROJECT)
PROJECT2= σBudget≤150.000(PROJECT)

• Definition: Minterm m is conjunction of simple predicates as m = p∗1 ∧ p∗2 ∧
· · · ∧ p∗j with p∗i = pi oder p∗i = ¬pi

Optimal horizontal Fragmentation /2

• Definition: Set Mn(P) of all n-ary Minterms for the set P of simple predicates:

Mn(P) = {m | m =

n∧
i=1

p∗i , pi ∈ P}

– Defines complete fragmentation of R without redundancies

∗ R =
⋃

m∈Mn(P)

σm(R)

∗ σmi
∩ σmj

= ∅,∀mi,mj ∈Mn(P),mi 6= mj

50

Optimal horizontal Fragmentation /3

• Completeness and no redundancy not sufficient:

– P = { Budget < 100.000, Budget > 200.000, Ort = ’MD’, Ort = ’B’ }
– Minterm p1 ∧ p2 ∧ p3 ∧ p4 not satisfiable; but ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4

• Identification of practically relevant Minterms M(P)

1. M(P) := Mn(P)

2. Remove irrelevant Minterms from M(P)

Elimination of irrelevant Minterms

1. Elimination of unsatisfiable Minterms If two terms p∗i and p∗j in one m ∈M(P)
contradict, m is not satisfiable and can be removed from M(P).

2. Elimination of dependent predicates If a p∗i from m ∈ M(P) implies another
term p∗j (e.g. functional dependency, overlapping domains), p∗j can be removed
from m.

3. Relevance of a fragmentation

• Minterms mi and mj , mi contains pi, mj contains ¬pi
• Access statistics: acc(m) (e.g. derived from query log)

• Fragment size: card(f) (derived from data distribution statistics)

• pi is relevant, if acc(mi)
card(fi)

6= acc(mj)
card(fj)

Algorithm HORIZFRAGMENT

• Identification of a complete, non-redundant and minimal horizontal fragmenta-
tion of a relation R for a given set of predicates P

• Input:

– P : set of predicates over R

• (Intermediate) Results:

– M(P): set of relevant Minterms

– F (P): set of Minterm-fragments from R

R(m) := σm(R) with m ∈M(P)

51

Algorithm HORIZFRAGMENT

forall p ∈ P do
Q′ := Q ∪ {p}
compute M(Q′) and F (Q′)
compare F (Q′) with F (Q)
if F (Q′) significant improvement over F (Q) then

Q := Q′

forall q ∈ Q \ {p} do /* unnecessary Fragmentation? */
Q′ := Q \ {q}
compute M(Q′) and F (Q′)
compare F (Q′) with F (Q)
if F (Q) no significant improvement over F (Q′) then

Q := Q′ /* d.h., remove q from Q */
end

end
end

52

4.4 Allocation and Replication
Allocation and Replication

• Allocation

– Assignment of relations or fragments to physical storage location

– Non-redundant: fragments are stored in only one place partitioned DB

– Redundant: fragments can be stored more than once replicated DB

• Replication

– Storage of redundant copies of fragments or relations

– Full: Each global relation stored on every node (no distribution design, no
distributed query processing, high costs for storage and updates)

– Partial: Fragments are stored on selected nodes

Allocation and Replication /2

• Aspects of allocation

– Efficiency:

∗ Minimization of costs for remote accesses
∗ Avoidance of bottlenecks

– Data security:

∗ Selection of nodes depending on their "‘reliability"’

53

Identification of an optimal Allocation

• Cost model for non-redundant allocation [Dadam 96]

• Goal: Minimize storage and transfer costs
∑

Storage +
∑

Transfer for K frag-
ments and L nodes

• Storage costs: ∑
Storage

=
∑
p,i

SpDpiSCi

– Sp: Size of fragment p in data units

– SCi: StorageCosts per data unit on node i

– Dpi: Distribution of fragment with Dpi = 1 if p stored on node i, 0 other-
wise

Identification of an optimal Allocation /2

• Transfer costs:∑
Transfer

=
∑
i,t,p,j

FitOtpDpjTCij +
∑
i,t,p,j

FitRtpDpjTCji

– Fit: Frequency of operation of type t on node i

– Otp: Size of operation t for fragment p in data units (e.g. size of query
string)

– TCij : TransferCosts from node i to j in data units

– Rtp: Size o the result of one operation of type t on fragment p

Identification of an optimal Allocation /3

• Additional constraints: ∑
i

Dpi = 1 for p = 1, . . . ,K∑
p

SpDpi ≤Mi for p = i, . . . , L

where Mi is max. storage capacity on node i

• Integer optimization problem

• Often heuristic solution possible:

– Identify relevant candidate distributions

– Compute costs and compare candidates

54

Identification of an optimal Allocation /4

• Cost model for redundant replication

• Additional constraints slightly modified:∑
i

Dpi ≥ 1 for p = 1, . . . ,K∑
p

SpDpi ≤Mi ffr p = i, . . . , L

Identification of an optimal Allocation /5

• Transfer costs

– Read operations on p send from node i to j with minimal TCij and Dpj =
1

– Update operations on p send to all nodes j with Dpj = 1

– Φt: of an operation
∑

(in case of update) or min (in case of read operation)∑
T
ransfer =

∑
i,t,p

Fit Φt
j:Dpj=1

(OtpTCij +RtpTCji)

Evaluation of Approaches

• Model considering broad spectrum of applications

• Exact computation possible

• But:

– High computation efforts (optimization problem)

– Exact input values are hard to obtain

55

