
Part II

Distributed Database Systems
4 Distributed DBS Architecture
Overview
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4.1 Foundations of DDBS
Architecture & Data Distribution
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12 Rules for DDBMS by Date

1. Local Autonomy

• Component system have maximal control over own data, local access does
not require access to other components

2. No reliance on central site

• Local components can perform independently of central component

3. Continuous operation/high availability

• Overall system performs despite local interrupt

4. Location transparency

• User of overall system should not be aware of physical storage location

12 Rules for DDBMS by Date /2

5. Fragmentation transparency

• If data of one relation is fragmented, user should not be aware of this

6. Replication transparency

• User should not be aware of redundant copies of data
• Management and redundancy is controlled by DBMS

7. Distributed query processing

• Efficient access to data stored on different sites within one DB operation

12 Rules for DDBMS by Date /3

8. Distributed Transaction Management

• ACID properties must persist for distributed operations

9. Hardware independence

• Component DB processing on different hardware platforms

10. Operating system independence

• Component DB processing on different OS

11. Network independence

• DB processing using different network protocols

12. DBMS independence (ideal)

• Usage of different DBMS possible
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Schema Architecture
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• Global conzeptual schema (GCS)

– Logical structure of overall DB

– Supported by all nodes

– Ensures transparency

• Global distribution schema (GDS)

– Describes fragmentation, replication, allocation
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System Architecture
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4.2 Catalog Management
Catalog Management

• Catalog: collection of metadata (schema, statistics, access rights, etc.)

– Local catalog

∗ Identical to catalog of a centralized DBS
∗ consistes of LIS and LCS

– Global ctalaog

∗ Also contains GCS and GDS
∗ System-wide management of users and access rights

• Storage

– Local catalog: on each node

– Global catalog: centralized, replicated, or partitioned

Global Catalog /1

• Centralized: one instance of global catalog managed by central node

– Advantages: only one update operation required, litte space consumption

– Disadvantages: request for each query, potential bottleneck, critical ressource

• Replicated: full copy of global catalog stored on each node

– Advantage: low communication overhead during queries, availabilty

– Disadvantage: high overhead for updates

• Mix- form: cluster-catalog with centralized catalog for certain clusters of nodes

Global Catalog /2

• Partitioned: (relevant) part of the catalog is stored on each node

– No explicit GCS union of LCS

– Partitioned GDS by extend object (relations, etc.) names (see System R*)
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Coherency Control

• Idea: buffer for non-local parts of the catalog

– Avoids frequent remote accesses for often used parts of the catalog

• Problem: invalidation of buffered copies after updates

Coherency Control /2

• Approaches

– Explicit invalidation:

∗ Owner of catalog data keeps list of copy sites
∗ After an update these nodes are informed of invalidation

– Implicit invalidation:

∗ Identification of invalid catalog data during processing time using ver-
sion numbers or timestamps (see System R*)

DB Object Name Management

• Task: identification of relations, views, procedures, etc.

• Typical schema object names in RDBMS: [<username>.]<objectname>

• Requirement global uniqueness in DDBS

– Name Server approach: management of names in centralized catalog

– Hierarchic Naming: enrich object name with node name [[<nodename>.]<username>.]<objectname>

∗ Node name: birth site (or simplification via alias)

Name Management: Node Types

Store site

global Name
Birth site

Catalog site

Store site Store site
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Catalog Management in System R*

• Birth site

– Prefix of the relation name

– Knows about storage sites

• Query processing

– Executing node gets catalog entry of relevant relation

– Catalog entry is buffered for later accesses

Catalog Management in System R* /2

• Query processing (continued)

– Partial query plans include time stamp of catalog entry

– Node processing partial query checks whether catalog time stamp is still
current

• In case of failure: buffer invalidation, re-set query and new query translation
according to current schema

• Summary:

– Advantage: high degree of autinomy, user-controlled invalidation of buffered
catalog data, good performance

– Disadvantage: no uniform realization of global views
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4.3 DDBS Design: Fragmentation
Database Distribution

• In Shared-Nothing-Systems (DDBS): definition of physical distribution of data

• Impact:

– Communication efforts overall performance

– Load balancing

– Availability

Bottom Up vs. Top Down

• Bottom Up

– Subsumption of local conceptual schemata (LCS) into global conceptual
schema (GCS)

– Integration of existing DB schema integration (Federated DBS)

• Top Down

– GCS of local DB designed first

– Distribution of schema to different nodes

– Distribution Design

Distribution Design Tasks

Node 1

Node 2

AllocationsFragmentsglobal Relation R

R1

R1

Node 3

R3

R2.1

R3

R4.2

R4.1

R2.2

R2

R4
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Fragmentation

• Granularity of distribution: relation

– Operations on one relation can always be performed on one node

– Simplifies integrity control

• Granularity of distribution: fragments of relations

– Grants locality of access

– Load balancing

– Reduced processing costs for operations performed only on part of the data

– Parallel processing

Fragmentation /2

• Approach:

– Column- or tuple-wise decomposition (vertical/horizontal)

– Described using relational algebra expressions (queries)

– Important rules/requirements

∗ Completeness
∗ Reconstructability
∗ Disjointness

Example Database
MEMBER

MNo MName Position
M1 Ian Curtis SW Developer
M2 Levon Helm Analyst
M3 Tom Verlaine SW Developer
M4 Moe Tucker Manager
M5 David Berman HW-Developer

PROJECT
PNr PName Budget Loc
P1 DB Development 200.000 MD
P2 Hardware Dev. 150.000 M
P3 Web-Design 100.000 MD
P4 Customizing 250.000 B

ASSIGNMENT
MNr PNr Capacity
M1 P1 5
M2 P4 4
M2 P1 6
M3 P4 3
M4 P1 4
M4 P3 5
M5 P2 7

SALARY
Position YSalary
SW Developer 60.000
HW-Developer 55.000
Analyst 65.000
Manager 90.000
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Primary Horizontal Fragmentation

• "‘Tupel-wise"’ decomposition of a global relation R into n fragments Ri

• Defined by n selection predicates Pi on attributes from R

Ri := σPi(R) (1 ≤ i ≤ n)

• Pi: fragmentation predicates

• Completeness: each tuple from R must be assigned to a fragment

• Disjointness: decomposition into disjoint fragments Ri ∩ Rj = ∅ (1 ≤ i, j ≤
n, i 6= j),

• Reconstructability: R =
⋃

1≤i≤n

Ri

Primary Horizontal Fragmentation /2

• Example: fragmentation of PROJECT by predicate on location attribute "‘Loc"’

PROJECT1 = σLoc=’M’(PROJECT)
PROJECT2 = σLoc=’B’(PROJECT)
PROJECT3 = σLoc=’MD’(PROJECT)

PROJECT1

PNr PName Budget Loc
P2 Hardware Dev. 150.000 M

PROJECT2

PNr PName Budget Loc
P4 Customizing 250.000 B

PROJECT3

PNr PName Budget Loc
P1 DB Development 200.000 MD
P3 Web-Design 100.000 MD
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Derived Horizontal Fragmentation

• Fragmentation definition of relation S derived from existing horizontal fragmen-
tation of relation R

• Using foreign key relationships

• Relation R with n fragments Ri

• Decomposition of depending relation S

Si = S nRi = S n σPi(R) = πS.*(S on σPi(R))

• Pi defined only on R

• Reconstructability: see above

• Disjointness: implied by disjointness of R-fragments

• Completeness: granted for lossless semi-join (no null-values for foreign key in
S)

Derived Horizontal Fragmentation /2

• Fragmentation of relation ASSIGNMENT derived from fragmentation of PROJECT
relation

ASSIGNMENT1= ASSIGNMENT n PROJECT1

ASSIGNMENT2= ASSIGNMENT n PROJECT2

ASSIGNMENT3= ASSIGNMENT n PROJECT3

ASSIGNMENT1
MNr PNr Capacity
M5 P2 7

ASSIGNMENT2
MNr PNr Capacity
M2 P4 4
M3 P4 3

ASSIGNMENT3
MNr PNr Capacity
M1 P1 5
M2 P1 6
M4 P1 4
M4 P3 5
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Vertical Fragmentation

• Comlumn-wise decomposition of a relation using relational projection

• Completeness: each attribute must be in at least one fragment

• Reconstructability: through natural join  primary key of global relation must
be in each fragment

Ri := πK,Ai,...,Aj (R)

R = R1 on R2 on · · · on Rn

• Limited disjointness

Vertical Fragmentation /2

• Fragmentation of PROJECT-Relation regarding Budget and project name / loca-
tion

PROJECT1 = πPNr, PName, Loc(PROJECT)
PROJECT2 = πPNr, Budget(PROJECT)

PROJECT1
PNr PName Loc
P1 DB Development MD
P2 Hardware Dev. M
P3 Web-Design MD
P4 Customizing B

PROJECT2
PNr Budget
P1 200.000
P2 150.000
P3 100.000
P4 250.000
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Hybrid Fragmentation

• Fragment of a relation→ is relation itself

• Can be subject of further fragmentation

• Also possible: combination of horizontal and vertical fragmentation

PROJECT1=πPNr, PName, Loc(PROJECT)

PROJECT2=πPNr, Budget(PROJECT)

PROJECT1,1=σLoc=’M’(PROJECT1)

PROJECT2,1=σLoc=’B’(PROJECT1)

PROJECT3,1=σLoc=’MD’(PROJECT1)

PROJECT

PROJECT

PROJECT

PROJECT PROJECT PROJECT1,1 1,2 1,3

1 2

horizontal

vertical
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Fragmentation transparency

• Decomposition of a relation is for user/application not visble

• Only view on global relation

• Requires mapping of DB operations to fragments by DDBMS

• Example

– Transparent: select * from Project where PNr=P1

– Without transparency:

select * from Project1 where PNr=P1
if not-found then

select * from Project2 where PNr=P1
if not-found then

select * from Project3 where PNr=P1

Fragmentation transparency /2

• Example (continued)

– Transparent: update Project set Ort=’B’ where PNr=P3

– Without transparency:

select PNr, PName, Budget
into :PNr, :PName, :Budget
from Project3 where PNr=P3

insert into Project2
values (:PNr, :PName, :Budget, ’B’)

delete from Project3 where PNr=P3
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Computation of an optimal Fragmentation

• In huge systems with many relations/nodes: intuitive decomposition often too
complex/not possible

• In this case: systematic process based on access characteristics

– Kind of access (read/write)

– Frequency

– Relations / attributes

– Predicates in queries

– Transfer volume and times

Optimal horizontal Fragmentation

• Based on [Özsu/Valduriez 99] and [Dadam 96]

• Given: relationR(A1, . . . , An), operator θ ∈ {<,≤, >,≥,=, 6=}, Domain dom(Ai)

• Definition: simple predicate pi of the form Ajθ const with const ∈ dom(Aj)

– Defines possible binary fragmentation of R

– Example:

PROJECT1= σBudget>150.000(PROJECT)
PROJECT2= σBudget≤150.000(PROJECT)

• Definition: Minterm m is conjunction of simple predicates as m = p∗1 ∧ p∗2 ∧
· · · ∧ p∗j with p∗i = pi oder p∗i = ¬pi

Optimal horizontal Fragmentation /2

• Definition: Set Mn(P ) of all n-ary Minterms for the set P of simple predicates:

Mn(P ) = {m | m =

n∧
i=1

p∗i , pi ∈ P}

– Defines complete fragmentation of R without redundancies

∗ R =
⋃

m∈Mn(P )

σm(R)

∗ σmi
∩ σmj

= ∅,∀mi,mj ∈Mn(P ),mi 6= mj
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Optimal horizontal Fragmentation /3

• Completeness and no redundancy not sufficient:

– P = { Budget < 100.000, Budget > 200.000, Ort = ’MD’, Ort = ’B’ }
– Minterm p1 ∧ p2 ∧ p3 ∧ p4 not satisfiable; but ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4

• Identification of practically relevant Minterms M(P )

1. M(P ) := Mn(P )

2. Remove irrelevant Minterms from M(P )

Elimination of irrelevant Minterms

1. Elimination of unsatisfiable Minterms If two terms p∗i and p∗j in one m ∈M(P )
contradict, m is not satisfiable and can be removed from M(P ).

2. Elimination of dependent predicates If a p∗i from m ∈ M(P ) implies another
term p∗j (e.g. functional dependency, overlapping domains), p∗j can be removed
from m.

3. Relevance of a fragmentation

• Minterms mi and mj , mi contains pi, mj contains ¬pi
• Access statistics: acc(m) (e.g. derived from query log)

• Fragment size: card(f) (derived from data distribution statistics)

• pi is relevant, if acc(mi)
card(fi)

6= acc(mj)
card(fj)

Algorithm HORIZFRAGMENT

• Identification of a complete, non-redundant and minimal horizontal fragmenta-
tion of a relation R for a given set of predicates P

• Input:

– P : set of predicates over R

• (Intermediate) Results:

– M(P ): set of relevant Minterms

– F (P ): set of Minterm-fragments from R

R(m) := σm(R) with m ∈M(P )
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Algorithm HORIZFRAGMENT

forall p ∈ P do
Q′ := Q ∪ {p}
compute M(Q′) and F (Q′)
compare F (Q′) with F (Q)
if F (Q′) significant improvement over F (Q) then

Q := Q′

forall q ∈ Q \ {p} do /* unnecessary Fragmentation? */
Q′ := Q \ {q}
compute M(Q′) and F (Q′)
compare F (Q′) with F (Q)
if F (Q) no significant improvement over F (Q′) then

Q := Q′ /* d.h., remove q from Q */
end

end
end
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4.4 Allocation and Replication
Allocation and Replication

• Allocation

– Assignment of relations or fragments to physical storage location

– Non-redundant: fragments are stored in only one place partitioned DB

– Redundant: fragments can be stored more than once replicated DB

• Replication

– Storage of redundant copies of fragments or relations

– Full: Each global relation stored on every node (no distribution design, no
distributed query processing, high costs for storage and updates)

– Partial: Fragments are stored on selected nodes

Allocation and Replication /2

• Aspects of allocation

– Efficiency:

∗ Minimization of costs for remote accesses
∗ Avoidance of bottlenecks

– Data security:

∗ Selection of nodes depending on their "‘reliability"’
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Identification of an optimal Allocation

• Cost model for non-redundant allocation [Dadam 96]

• Goal: Minimize storage and transfer costs
∑

Storage +
∑

Transfer for K frag-
ments and L nodes

• Storage costs: ∑
Storage

=
∑
p,i

SpDpiSCi

– Sp: Size of fragment p in data units

– SCi: StorageCosts per data unit on node i

– Dpi: Distribution of fragment with Dpi = 1 if p stored on node i, 0 other-
wise

Identification of an optimal Allocation /2

• Transfer costs:∑
Transfer

=
∑
i,t,p,j

FitOtpDpjTCij +
∑
i,t,p,j

FitRtpDpjTCji

– Fit: Frequency of operation of type t on node i

– Otp: Size of operation t for fragment p in data units (e.g. size of query
string)

– TCij : TransferCosts from node i to j in data units

– Rtp: Size o the result of one operation of type t on fragment p

Identification of an optimal Allocation /3

• Additional constraints: ∑
i

Dpi = 1 for p = 1, . . . ,K∑
p

SpDpi ≤Mi for p = i, . . . , L

where Mi is max. storage capacity on node i

• Integer optimization problem

• Often heuristic solution possible:

– Identify relevant candidate distributions

– Compute costs and compare candidates
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Identification of an optimal Allocation /4

• Cost model for redundant replication

• Additional constraints slightly modified:∑
i

Dpi ≥ 1 for p = 1, . . . ,K∑
p

SpDpi ≤Mi ffr p = i, . . . , L

Identification of an optimal Allocation /5

• Transfer costs

– Read operations on p send from node i to j with minimal TCij and Dpj =
1

– Update operations on p send to all nodes j with Dpj = 1

– Φt: of an operation
∑

(in case of update) or min (in case of read operation)∑
T
ransfer =

∑
i,t,p

Fit Φt
j:Dpj=1

(OtpTCij +RtpTCji)

Evaluation of Approaches

• Model considering broad spectrum of applications

• Exact computation possible

• But:

– High computation efforts (optimization problem)

– Exact input values are hard to obtain
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