Part 11
Distributed Database Systems

4 Distributed DBS Architecture

Overview

Contents

35



4.1 Foundations of DDBS
Architecture & Data Distribution

DBMS-Instance

Dimensions
Heterogeneity
Centraiized DBS 3 : |
3 : 1 : Autonomy
Client/Server-DBS & __________ [
Distributed DBS /.l
Distribution

36



12 Rules for DDBMS by Date
1. Local Autonomy

e Component system have maximal control over own data, local access does
not require access to other components

2. No reliance on central site

e Local components can perform independently of central component
3. Continuous operation/high availability

e Opverall system performs despite local interrupt
4. Location transparency

e User of overall system should not be aware of physical storage location

12 Rules for DDBMS by Date /2
5. Fragmentation transparency
o If data of one relation is fragmented, user should not be aware of this
6. Replication transparency

e User should not be aware of redundant copies of data

e Management and redundancy is controlled by DBMS
7. Distributed query processing

e Efficient access to data stored on different sites within one DB operation

12 Rules for DDBMS by Date /3
8. Distributed Transaction Management
o ACID properties must persist for distributed operations
9. Hardware independence
e Component DB processing on different hardware platforms
10. Operating system independence
e Component DB processing on different OS
11. Network independence
e DB processing using different network protocols
12. DBMS independence (ideal)
o Usage of different DBMS possible

37



Schema Architecture
External Schema 1

External Schema N

Global
Conceptual
Schema (GCS)

Global
Distribution
schema (GDS)

/

Local Local Local
Conceptual Conceptual Conceptual
Schema 1 (LCS) Schema 2 (LCS) Schema M (LCS)

\ \ \
Local Local Local

Internal Internal Internal

Schema 1 (LIS) Schema 2 (LIS) Schema M (LIS)

.

.

e Global conzeptual schema (GCS)

— Logical structure of overall DB

— Supported by all nodes

— Ensures transparency

e Global distribution schema (GDS)

— Describes fragmentation, replication, allocation

38



System Architecture

39

Global Global Replica
Query Catalog Management
Processing Management globa 1
Global Global Global Component
Recovery MT;:;S;eCIE:Et Synchronisation
"normal DBMS" local
Component



4.2 Catalog Management
Catalog Management
e Catalog: collection of metadata (schema, statistics, access rights, etc.)

— Local catalog

+ Identical to catalog of a centralized DBS
* consistes of LIS and LCS

— Global ctalaog

* Also contains GCS and GDS
* System-wide management of users and access rights

e Storage

— Local catalog: on each node

— Global catalog: centralized, replicated, or partitioned

Global Catalog /1

e Centralized: one instance of global catalog managed by central node

— Advantages: only one update operation required, litte space consumption

— Disadvantages: request for each query, potential bottleneck, critical ressource
e Replicated: full copy of global catalog stored on each node

— Advantage: low communication overhead during queries, availabilty

— Disadvantage: high overhead for updates
e Mix- form: cluster-catalog with centralized catalog for certain clusters of nodes

Global Catalog /2

e Partitioned: (relevant) part of the catalog is stored on each node

— No explicit GCS ~~ union of LCS

— Partitioned GDS by extend object (relations, etc.) names (see System R*)

40



Coherency Control

e Idea: buffer for non-local parts of the catalog
— Avoids frequent remote accesses for often used parts of the catalog

e Problem: invalidation of buffered copies after updates

Coherency Control /2

e Approaches

— Explicit invalidation:
* Owner of catalog data keeps list of copy sites
* After an update these nodes are informed of invalidation

— Implicit invalidation:

* Identification of invalid catalog data during processing time using ver-
sion numbers or timestamps (see System R*)

DB Object Name Management

e Task: identification of relations, views, procedures, etc.
e Typical schema object names in RDBMS: [ <username> . ] <objectname>
e Requirement global uniqueness in DDBS

— Name Server approach: management of names in centralized catalog
— Hierarchic Naming: enrich object name with node name [ [ <nodename> . 1 <username> . ] <objectname>

* Node name: birth site (or simplification via alias)

Name Management: Node Types

global Name
Birth site

i

Catalog site

T~

Store site Store site Store site

41



Catalog Management in System R*

e Birth site

— Prefix of the relation name

— Knows about storage sites
e Query processing

— Executing node gets catalog entry of relevant relation

— Catalog entry is buffered for later accesses

Catalog Management in System R* /2

e Query processing (continued)

— Partial query plans include time stamp of catalog entry

— Node processing partial query checks whether catalog time stamp is still
current

e In case of failure: buffer invalidation, re-set query and new query translation
according to current schema

e Summary:

— Advantage: high degree of autinomy, user-controlled invalidation of buffered
catalog data, good performance

— Disadvantage: no uniform realization of global views

42



4.3 DDBS Design: Fragmentation

Database Distribution
o In Shared-Nothing-Systems (DDBS): definition of physical distribution of data
e Impact:

— Communication efforts ~~ overall performance
— Load balancing

— Availability

Bottom Up vs. Top Down

e Bottom Up

— Subsumption of local conceptual schemata (LCS) into global conceptual
schema (GCS)

— Integration of existing DB ~~ schema integration (Federated DBS)
e Top Down
— GCS of local DB designed first

— Distribution of schema to different nodes

— Distribution Design

Distribution Design Tasks

R1

R1 Node 1
R2.1
R2
Node 2
R22
Node 3
global Relation R Fragments Allocations

43



Fragmentation

e Granularity of distribution: relation

— Operations on one relation can always be performed on one node

— Simplifies integrity control

e Granularity of distribution: fragments of relations

Grants locality of access

Load balancing

Reduced processing costs for operations performed only on part of the data

Parallel processing

Fragmentation /2
e Approach:

— Column- or tuple-wise decomposition (vertical/horizontal)
— Described using relational algebra expressions (queries)
— Important rules/requirements

* Completeness
* Reconstructability
* Disjointness

Example Database

MEMBER

2 siti PROJECT
MNo MN.xmev Position PNr PName Budget Toc
Ml Tan Curtis SW Developer
P1 DB Development 200.000 MD
M2 Levon Helm Analyst
. P2 Hardware Dev. 150.000 M
M3 Tom Verlaine SW Developer 5
P3 Web-Design 100.000 MD
M4 Moe Tucker Manager P4 Customizin 250.000 | B
M5 David Berman HW-Developer : g .
ASSIGNMENT
MN; ] apac
r | PNt Capacity SALARY
M1 P1 5 —
M2 P4 " Position YSalary
M2 Pl 6 SW Developer 60.000
HW-Developer 55.000
M3 P4 3
Analyst 65.000
M4 Pl 4 M: 90.000
M4 3 5 anager X
M5 P2 7

44



Primary Horizontal Fragmentation

"

e "‘Tupel-wise

e Defined by n selection predicates P; on attributes from R

R;,:=0p,(R) (1<i<mn)

o P;: fragmentation predicates

e Completeness: each tuple from R must be assigned to a fragment

e Disjointness: decomposition into disjoint fragments R; N R; = ()

n,i 7 j),

e Reconstructability: R = U R;
1<i<n

Primary Horizontal Fragmentation /2

decomposition of a global relation R into n fragments R;

(1<i,j<

e Example: fragmentation of PROJECT by predicate on location attribute "‘Loc"’

PROJECT; = OLoc="m’ (PROJECT)
PROJECT; = OLoc—"8' (PROJECT)
PROJECT3; = OLoc="MD’ (PROJECT)
PROJECT| PROJECTo
[ PNr_ ] PName [ Budget [ Loc | [ PNr_ [ PName | Budget | Loc |
[ P2 | HardwareDev. | 150000 [ M | [P T cC | 250000 | B |
PNr PName Budget Loc
PROJECT3 P1 DB Development 200.000 MD
P3 Web-Design 100.000 | MD

45



Derived Horizontal Fragmentation

o Fragmentation definition of relation .S derived from existing horizontal fragmen-
tation of relation R

e Using foreign key relationships
e Relation R with n fragments R;

e Decomposition of depending relation .S

Si =S5 Kx R, = S x O’pi(R) Zﬂs,*(s X O'pi(R))

e P; defined only on R
e Reconstructability: see above
o Disjointness: implied by disjointness of R-fragments
e Completeness: granted for lossless semi-join (no null-values for foreign key in
S)
Derived Horizontal Fragmentation /2

e Fragmentation of relation ASSIGNMENT derived from fragmentation of PROJECT
relation

ASSIGNMENT+  ASSIGNMENT X PROJECT;
ASSIGNMENTs+=  ASSIGNMENT X PROJECT,
ASSIGNMENTs  ASSIGNMENT X PROJECT;3

ASSIGNMENT|
[ MNr T PNr [ Capacity |

ASSIGNMENTg3

[ ™5 T P2 ] 7 | MNr PNr Capacity
Ml Pl 5
ASSIGNMENTo M2 Pl s
MNr PNr Capacity M4 Pl 4
M2 P4 4 M4 P3 5
M3 P4 3

46



Vertical Fragmentation

e Comlumn-wise decomposition of a relation using relational projection
e Completeness: each attribute must be in at least one fragment

e Reconstructability: through natural join ~- primary key of global relation must
be in each fragment

R =1k a,,..4;(R)
R=Ri M RyX --- X R,

e Limited disjointness

Vertical Fragmentation /2

e Fragmentation of PROJECT-Relation regarding Budget and project name / loca-

tion
PROJECT; = TPNr, PName, Loc (PROJECT)
PROJECTy = PN, Budget(PROJECT)
PROJECT PROJECTo
PNr PName Loc PNr Budget
Pl DB Development MD Pl 200.000
P2 Hardware Dev. M P2 150.000
P3 ‘Web-Design MD P3 100.000
P4 Ci izi B P4 250.000

47



Hybrid Fragmentation

e Fragment of a relation — is relation itself
e Can be subject of further fragmentation

e Also possible: combination of horizontal and vertical fragmentation
PROJECT

vertical
PROJECT f PNy, PName, Loc (PROJECT)
PROJECTZ TNy, Budget (PROJECT)

PROJECT £ q[ oc—"M’ (PROJECT] ) PROJECT, PROJECT,

PROJECTF q oc—'B’ (PROJECTY )
PROJECTS qgc="MD" (PROJECT1) ot il

PROJECT,; PROJECT;, PROJECT,,

48



Fragmentation transparency

e Decomposition of a relation is for user/application not visble
e Only view on global relation

e Requires mapping of DB operations to fragments by DDBMS
e Example

— Transparent: select » from Project where PNr=Pl

select * from Projectl where PNr=Pl
if not-found then
— Without transparency: select * from Project2 where PNr=Pl
if not-found then
select * from Project3 where PNr=Pl

Fragmentation transparency /2

e Example (continued)

— Transparent: update Project set Ort='B’ where PNr=P3

select PNr, PName, Budget
into :PNr, :PName, :Budget

from Project3 where PNr=P3

— Without transparency: . . .
p y insert into Project2

values (:PNr, :PName, :Budget, ’'B’)

delete from Project3 where PNr=P3

49



Computation of an optimal Fragmentation

e In huge systems with many relations/nodes: intuitive decomposition often too
complex/not possible

e In this case: systematic process based on access characteristics

— Kind of access (read/write)

Frequency

Relations / attributes

Predicates in queries

Transfer volume and times

Optimal horizontal Fragmentation

Based on [Ozsu/Valduriez 99] and [Dadam 96]

Given: relation R(A;, ..., A,),operator § € {<,<,> > = %}, Domain dom(A4;)
o Definition: simple predicate p; of the form A6 const with const € dom(A,)

— Defines possible binary fragmentation of R

— Example:

PROJECT=  OBudger>150.000(PROJECT)
PROJECT=  OBudget<150.000(PROJECT)

o Definition: Minterm m is conjunction of simple predicates as m = p} A p5 A

-+ A pj with p; = p; oder p; = —p;

Optimal horizontal Fragmentation /2

e Definition: Set M,,(P) of all n-ary Minterms for the set P of simple predicates:
My (P)={m|m= \p} p € P}
i=1

— Defines complete fragmentation of R without redundancies

« R=|J om(R)
meM, (P)
* Oy N Om; = 0,Ymi,m; € My, (P),m; #m;

50



Optimal horizontal Fragmentation /3

e Completeness and no redundancy not sufficient:
— P = { Budget < 100.000, Budget > 200.000, Ort ="MD’, Ort =B’ }
— Minterm p; A p2 A p3 A py not satisfiable; but =p; A —ps A —p3 A —py
e Identification of practically relevant Minterms M (P)
1. M(P):= M,(P)

2. Remove irrelevant Minterms from M (P)

Elimination of irrelevant Minterms

1. Elimination of unsatisfiable Minterms If two terms p; and p} in one m € M (P)
contradict, m is not satisfiable and can be removed from M (P).

2. Elimination of dependent predicates If a p; from m € M (P) implies another
term p; (e.g. functional dependency, overlapping domains), p; can be removed
from m.

3. Relevance of a fragmentation

e Minterms m; and m, m; contains p;, m,; contains —p;
e Access statistics: acc(m) (e.g. derived from query log)

e Fragment size: card(f) (derived from data distribution statistics)

acc(m;) 7& acc(my)

card(f;) card(f;)

e p; is relevant, if

Algorithm HORIZFRAGMENT

e Identification of a complete, non-redundant and minimal horizontal fragmenta-
tion of a relation R for a given set of predicates P

e Input:
— P: set of predicates over R
e (Intermediate) Results:

— M(P): set of relevant Minterms
— F(P): set of Minterm-fragments from R

R(m) := o, (R) with m € M(P)

51



Algorithm HORIZFRAGMENT

forall p € P do
Q' =QU{p}
compute M (Q’) and F(Q")
compare F(Q") with F(Q)
if F(Q") significant improvement over F(Q)) then
Q:=Q
forall ¢ € Q \ {p} do /* unnecessary Fragmentation? */
Q =Q\{q}
compute M (Q’) and F(Q")
compare F(Q’) with F(Q)
if F(Q) no significant improvement over F(Q") then
Q := Q' I* d.h., remove q from Q */
end
end
end

52



4.4 Allocation and Replication

Allocation and Replication

e Allocation

— Assignment of relations or fragments to physical storage location
— Non-redundant: fragments are stored in only one place ~~ partitioned DB

— Redundant: fragments can be stored more than once ~- replicated DB
e Replication

— Storage of redundant copies of fragments or relations

— Full: Each global relation stored on every node (no distribution design, no
distributed query processing, high costs for storage and updates)

— Partial: Fragments are stored on selected nodes

Allocation and Replication /2

e Aspects of allocation

— Efficiency:
* Minimization of costs for remote accesses
* Avoidance of bottlenecks

— Data security:

"s

* Selection of nodes depending on their "‘reliability

53



Identification of an optimal Allocation

e Cost model for non-redundant allocation [Dadam 96]

e Goal: Minimize storage and transfer costs > ¢, .. ge T > Trans fer for K frag-
ments and L nodes

e Storage costs:

ZStorage - Z SpriSCi

2
— Sy Size of fragment p in data units
— SCj: StorageCosts per data unit on node ¢

— D,;: Distribution of fragment with D,; = 1 if p stored on node %, 0 other-
wise

Identification of an optimal Allocation /2

e Transfer costs:

ZTTansfer - Z FitOtpDPjTCij + Z FithprjTCji

4,t,p,J 4,t,p,J

— F};: Frequency of operation of type ¢ on node ¢

— Oyp: Size of operation ¢ for fragment p in data units (e.g. size of query
string)

— T'C;j: TransferCosts from node 7 to j in data units

— Ryp: Size o the result of one operation of type ¢ on fragment p

Identification of an optimal Allocation /3

e Additional constraints:
ZDW =1 for p=1,...,K

> 8pDyi < M; for p=i,.... L
P
where M, is max. storage capacity on node ¢
e Integer optimization problem

e Often heuristic solution possible:

— Identify relevant candidate distributions

— Compute costs and compare candidates

54



Identification of an optimal Allocation /4

e Cost model for redundant replication

e Additional constraints slightly modified:
Y Dpi>1for p=1,...,K

> SpDyi < M; ffr p=i,...,L
p

Identification of an optimal Allocation /5

e Transfer costs

- Read operations on p send from node ¢ to j with minimal 7'C’;; and D,; =
1

— Update operations on p send to all nodes j with D,; = 1

— ®,: of an operation Y, (in case of update) or min (in case of read operation)

Y ransfer=3 Fy @ (0ypTCi;+ RyTCpi)

itp JDwi=1

Evaluation of Approaches

e Model considering broad spectrum of applications
e Exact computation possible

o But:

— High computation efforts (optimization problem)

— Exact input values are hard to obtain

55



