1. Motivation

Special Requirements of Data Management for Engineering Applications

Overview

- What are typical/conventional applications?
- Why is it necessary to talk about engineering data?
 - What is different about engineering data?
 - Typical structure
 - Special requirements
 - What is different about how data is accessed in engineering applications?
 - Queries
 - Updates
 - How is engineering data used differently?
 - Transactions
 - Processes
 - Applications
- What is the current state of the art for DMEA?

Conventional Applications

- Document-oriented (files), e.g.
 - Textprocessing
 - Desktop Publishing
 - Web
 - Spreadsheets
 - Media: Image, Video, Audio

- Administration of Company / Organization
- Enterprise Ressource Planning
- Customer Relationship
 Management
- Finance and Banking

Conventional vs. Engineering Data

Conventional Data	Engineering Data
Simple (flat) records	Complex Objects
 One record represents one real-world object Simple relationships (e.g. by identifying keys) 	 Hierarchical structures: an object may contain other objects, etc. Network structures: objects may form new structures from complex relations
Records represent current state	Need to represent development of objects as versions
Records as a single representation of a real- world fact	Need to represent concurrent/parallel manifestations of one object as variants or configurations
Records have a fixed structure	Engineering data is unpredictable and requires flexibile structures
Different records are most often loosely connected along relations	There are strong dependencies between different objects, often existential

Hierarchical Structures

- Typical product structure: a complete product consisting of parts or assemblies, where assemblies again may consist of assemblies or parts
- Each simple part or composition may be complex itself
- E.g. input for production planning (Bill of Material) etc.

[Source: http://en.wikipedia.org/wiki/Bill_of_materials]

Network structures

- Several components may be connected in a network and form a higher level unit
- Each component as well as the relationships can be complex
- E.g. electronical engineering, telecommunications network, embedded components connected via a fieldbus, etc.

[Source: Philipp Ludwig]

Versions

- Temporal sequence of different development states of one object
- For internal usage: milestones or consistent states for possible rollbacks
 - Work in progress
 - Fitness for certain development steps (simulation, mockup, field test, etc.)
 - Alpha, beta, release candidate
- For externaal usage: release of an improved product of the same development line

VW Golf I

VW Golf II

VW Golf III

• •

Variants

- Alternative states of one object existing in parallel
- Internal variants may exist due to concurrent design activities
- External variants exist, e.g. to address different market segments or different application scenarios
- Different external variants may have different properties, offer different functionality, and fulfill different requirements

Versions and Variants

- Both represent different alternative representations of one design object
- Are often managed in a common context
- Specialized systems offering according operations, e.g.
 - Check out
 - Branching: creating a new variant
 - Merging
- Certain naming und numbering systems to identify versions and variants internally and/or externally

[Source: http://en.wikipedia.org/wiki/Microsoft_Windows]

Flexibility

- Conventional data within one universe of discourse often has a fixed structure (records, attributes, relationships, etc.)
- The structure of engineering data on the same realworld object may vary widely for
 - different applications
 - different companies
 - different product categories
 - different process instances
 - different versions or variants

Strong dependencies

- Strong, e.g. existential, dependendcies are more common in engineering applications due to complex product structures
- Existential dependencies:
 - Relationship among objects, where a dependent object may not exist without a
 - E.g. rooms are existantially dependent on the building they are in
- Non-existential dependencies:
 - Objects in a relationship may exist independently of each other
 - E.g. students and lectures

(Non-)Existential Relations in ER and UML

Predominant Access Characteristics

Access to Conventional Data	Access to Engineering Data
Simple access patterns for read operations	Complex access patterns for read operations
 Retrieval of single records (exact match) Partial match or range queries 	 Retrieval of complex objects (entire or partial hierarchies or networks) Queries including complex spatial conditions Navigational access along relationships
Update operations on single records	Updates may involve huge fractions of data
Small amounts of data in one query	Typically big to huge results
Small to possibly huge numbers of users	Small groups of users

Spatial Access

- Access to geometrical (2D or 3D shapes, geographical, architectural, etc.) often based on their position in space, e.g. objects in current viewport to be rendered
- Conforms to multi-dimensional range query, e.g. 2D-window

$$xmin \le x \le xmax$$

 $ymin \le y \le ymax$

Special support in databases

[Source: http://en.wikipedia.org/wiki/Computer-integrated manufacturing]

Navigational Access

- Access pattern of following relationships to retrieve objects
- E.g. computing the transitive closure or traversing a tree
- Often a programming pattern, but also carried out by users interactively

[Source: PERT Chart by Thomas Baier]

Predominant Usage Patterns

Usage of Conventional Data	Usage of Engineering Data
Isolated work of single users	Collaborative work of groups of responsible engineers
Short time required for single tasks (transactions)	Long sessions (transactions) to carry out engineering tasks
One-shot read and update accesses	Interactive and iterative re-finement of complex objects
One or few application(s) used to access the data	Diverse applications for different tasks accessing the same or strongly related data

Collaborative Work

- Members of groups of engineers concurrently and collaboratively working on
 - the same design or
 - different but related aspects of the same design (maybe using different applications/tools)

[Source: The DLR Concurrent Engineering Facility]

- May result in possible conflicts, data loss and inconsistencies
- Resolution mechanisms integrated with management of internal versions and variants, workspaces, check in/check out, etc.

[Source: http://en.wikipedia.org/wiki/Computer-supported cooperative work]

Long Transactions

- Product development as creative process: activities typically consistent of long sequences of step-wise and iterative modifications of engineering data
- Processes very loosely structured
- Consistent state may be reached after hours, days, weeks or even longer
- Exclusive access to avoid side-effects data may be prohibitive because of decreased potential for parallel activities

Diverse Applications

- Along product life cycle (including product development phases) engineers may use many different applications with slightly different requirements
- Focus here on
 - CAD (- Design)
 - CAM (- Manufacturing)
 - CAE (Engineering)
 - PDM (Product Data Management)
 - PLM (Product Lifecycle Management)
- Collaboration (within phases) and processes (across phases) requires interoperability
 - Integration of data (e.g. in one database system)
 - Formats/standards suitable for da excahnge

[Source: Engineers' CAx education—it's not only CAD. Dankwort, Weidlich, Guenther, Blaurock, 2004]

[Source: http://en.wikipedia.org/wiki/Computer-aided_technologies]

Summary (Motivation)

- Engineering applications with very specific requirements regarding data management
 - More complex structures
 - Access patterns focusing on complex objects
 - Usage in creative, interactive and collaborative processes
- Conventional solutions for data management are commonly used in Engineering applications
 - File systems with standardized/proprietary file formats
 - Relational Database Management Systems (RDBMS)
- Advanced data management solutions provide some suitable concepts and are frequently used
 - Object-Relational DBMS
 - Object-Oriented DBMS
 - NoSQL DBMS